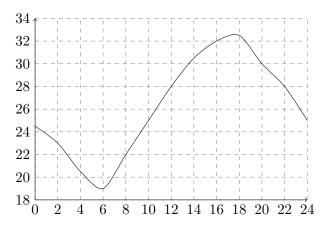
Soit f une fonction définie sur un intervalle I.

I Variations (séance1 cours+exercices: 2h)

Activité introductrice (à compléter)



Voici le relevé des températures une certaine journée de juillet dans une ville du Rhône.

1. Dans quel créneaux horaires la température a-t-elle augmenté ? diminué ? La température augmente entre 6 et 18h.

La température diminue entre 0 et 6h, puis entre 18 et 24h.

On note f la fonction qui à l'heure t de la journée associe la température (en degrés).

- 2. Donner l'ensemble de définition de f:[0;24]
- 3. (a) Comment évoluent les valeurs de f(t) lorsque t augmente de 6 à 18? Lorsque t augmente de 6 à 18, la température f(t) augmente aussi (de 19 à 33 degrés). On dit que la fonction f est croissante sur l'intervalle [6; 18].
 - (b) Compléter (avec >,< ou =) : f(8) = 22 et f(12) = 28 donc 8 < 12 et f(8) < f(12). On constate que f(8) et f(12) sont dans le même ordre que 8 et 12.
 - 4. Lorsque t augmente de 0 à 6, la température f(t) diminue (de 24,5 à 19 degrés). On dit que la fonction f est décroissante sur l'intervalle [0;6].

Si l'on choisit deux réels a et b dans l'intervalle [0;6], f(a) et f(b) sont ils rangés dans le même ordre que a et b? NON

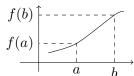
(a) Sur quel autre intervalle la fonction est-elle décroissante? [18; 24]

Définition 1 (à lire et compléter)

La fonction f est **croissante sur** I signifie que :

Pour tous réels a et b de I, si a < b alors f(a) < f(b)

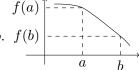
Autrement dit, les nombres f(a) et f(b) sont rangés dans le même ordre que a et b. f(a) On dit que f conserve l'ordre.



La fonction f est **décroissante sur** I signifie que :

Pour tous réels a et b de I, si a < b alors f(a) > f(b)

Autrement dit, les nombres f(a) et f(b) sont rangés dans l'ordre inverse de a et b. f(b) On dit que f change l'ordre.



La fonction f est **constante sur** I signifie que sur I, toutes les valeurs de f(x) restent égales au même nombre.

Définition 2

Si la fonction f ne change pas de sens de variation sur I on dit qu'elle est **monotone**.

Les variations d'une fonction sur son ensemble de définition sont souvent résumées dans un tableau appelé tableau de variations.

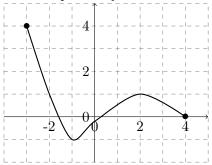
Exemple 1 : Dresser le tableau de variations de la fonction de l'activité introductrice.

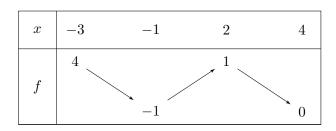
Compléter par les flèches, toujours orientées vers la droite

x	0	6	18	24
f	24.5	19	33.5	25

Le tableau est une version résumée de la courbe, les échelles ne sont pas respectées mais l'ordre des nombres oui!

Exemple 2: f est une fonction définie sur [-3; 4] dont voici la courbe, dresser son tableau de variations.





Les variations d'une fonction sont souvent faciles à lire sur la représentation graphique. Elles peuvent aussi être démontrées par un calcul.

Exemple 3:

1. Démontrons que la fonction f définie sur $]-\infty;+\infty[$ par f(x)=2x-3 est strictement croissante : Pour tous réels a et b, si a < b

$$2a < 2b$$
 (on multiplie par 2, nombre positif, cela ne change pas l'ordre) $2a + 3 < 2b + 3$ (on ajoute 3, ça ne change pas l'ordre) $f(a) < f(b)$

2. En vous inspirant de la question précédente, justifier que la fonction g définie sur $]-\infty;+\infty[$ par g(x) = -5x - 2 est décroissante.

Pour tous réels a et b, si a < b

$$-5a>-5b$$
 (on multiplie par -5, nombre négatif, ça change l'ordre) $-5a-2>-5b-2$ (on ajoute -2, ça ne re-change pas l'ordre) $g(a)>g(b)$

3. Conjecturer une règle pour donner les variations d'une fonction de la forme f(x) = mx + p.

Sens de variation des fonctions affines f(x) = mx + p:

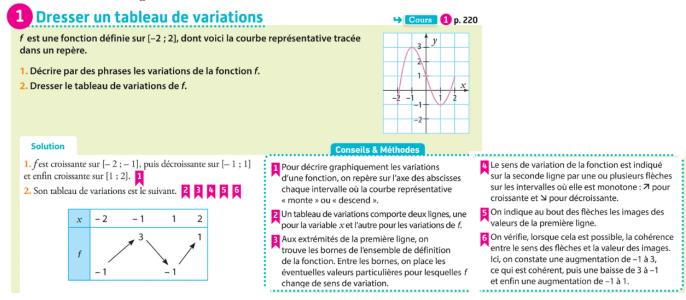
- si m > 0, f est croissante.
- si m < 0, f est décroissante.

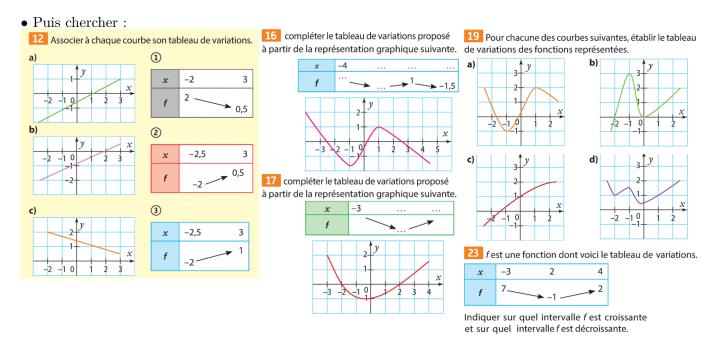
Attention, il ne faut pas confondre le tableau de variations et le tableau de signe.

- La fonction est **croissante** lorsque la « courbe monte ». Cela se traduit par une **flèche** vers le haut dans le tableau de variations.
- La fonction est **positive** lorsque la « courbe est au dessus de l'axe des abscisses ». Cela se traduit par un + dans le tableau de signes.

Exercices

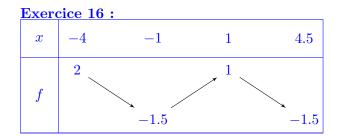
• Lire l'exercice corrigé :





Exercice 12: a) et 3; b) et 2; c) et 1

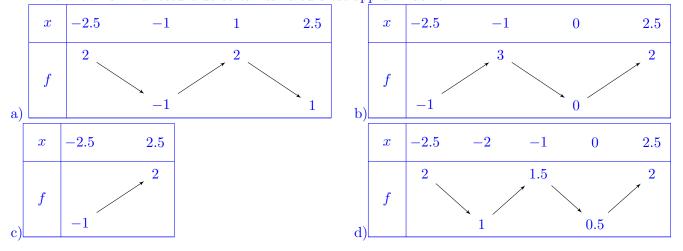
Pour distinguer la courbe a) et la b), il faut bien regarder les valeurs des extrémités : pour la a), f(3) = 1 alors que dans la b) f(3) = 0.5.



Exercice 17: La lecture de certaines valeurs est approximative!

PIOXII	maure:		
x	-3	-0.5	4
f	2	-1	1.5

Exercice 19: La lecture de certaines valeurs est approximative!



Exercice 23 : f est croissante sur l'intervalle [2:4] (on lit les abscisses, les x au dessus de la flèche qui monte) et décroissante sur l'intervalle [-3;2] (on lit les abscisses au dessus de la flèche qui descend)

Séance 2 (1h): Encore des exercices sur les tableaux de variations...

• Lire l'exercice corrigé :

énoncé : f est une fonction dont voici le tableau de variations

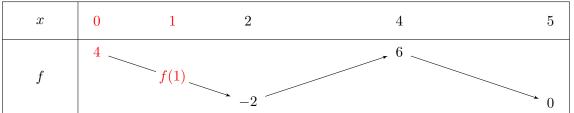
x	0	2	4	5
f	4	-2	6	0

- 1) Comparer f(0) et f(1)
- 2) Comparer f(2.5) et f(3)
- 3) Comparer f(1) et f(4.5)

correction:

1) Comparer f(0) et f(1)

Si on place les images de 0 (qui était déjà placé) et 1 dans le tableau en respectant l'ordre :



On constate qu'ils sont sur une portion où la fonction est strictement décroissante donc f(0) > f(1)

2) Comparer f(2.5) et f(3)

Si on place les images de 2.5 et 3 dans le tableau en respectant l'ordre :

x	0	2	2.5	3	4	5
f	4	-2	f(2.5)	_f(3)	6	0

On constate qu'ils sont sur une portion où la fonction est strictement croissante donc f(2.5) < f(3)

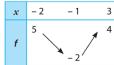
3) Comparer f(1) et f(4.5)

Si on place les images de 1 et 4.5 dans le tableau en respectant l'ordre :

į	or our prace	100 1111050	B 46 1 66 1.9	dans ic table	ad on respectant rere		
	x	0	1	2	4	4.5	5
	f	4	f(1)	-2	6	f(4.5)	0

On constate qu'ils ne sont pas sur un intervalle où la fonction est monotone, on ne peut pas conclure!

• Puis chercher:

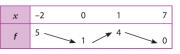


- 1. Ouel est l'ensemble de définition de f?
- **2.** Comparer f(0) et f(2).
- **3.** Comparer f(-2) et f(-1,5).

3 fest une fonction dont voici le tableau de variations. 21 g est une fonction dont on connaît le tableau de 25 Voici le tableau de variations d'une fonction f. variations

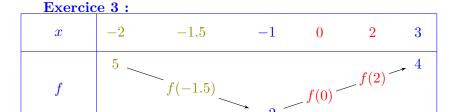
x	-3	1	2	5
g	4	3 /	5	-3

- 1. a) Donner le sens de variation de la fonction g sur l'intervalle [2;5].
- **b)** En déduire quel est le nombre le plus grand entre q(3)et g (4).
- 2. Sur le modèle de la question précédente, comparer g(1)et g (1,5).
- 3. Même question pour g(-2) et g(0).



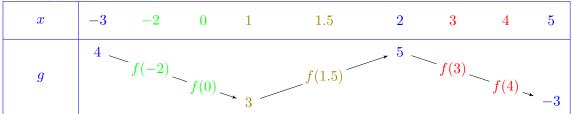
- 1. Comparer si possible les nombres suivants en justifiant.
- **a)** f(2) et f(4)
- **b)** f(-2) et f(-1)
- 2. Résoudre $f(x) \ge 0$.
- **3.** On sait de plus que f(-1,5) = 4.

Résoudre $f(x) \le 4$ et f(x) > 4.



- 1. f est définie sur [-2;3] (on lit les valeurs extrêmes de la ligne des x)
- 2. f(0) < f(2) (valeurs rouges du tableau, sur une flèche « croissante », l'ordre est respecté)
- 3. f(-2) > f(-1.5) (valeurs marrons du tableau, sur une flèche « décroissante », l'ordre est inversé)

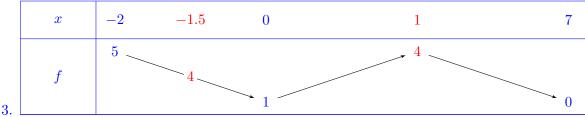
Exercice 21:



- 1. Sur l'intervalle [2, 5], g est décroissante (flèche qui descend) donc 3 < 4 mais g(3) > g(4).
- 2. Sur l'intervalle [1;2], g est croissante (flèche qui monte) donc 1 < 1.5 et g(1) < g(1.5).
- 3. Sur l'intervalle [-3;1], g est décroissante (flèche qui descend) donc -2 < 0 mais g(-2) > g(0).

Exercice 25:

- 1. f(2) > f(4) car sur l'intervalle [1, 7], la fonction est décroissante. f(-2) > f(-1) car sur l'intervalle [-2; 0], la fonction est décroissante.
- 2. D'après le tableau, la fonction « ne descend jamais en dessous de 0 » donc $f(x) \ge 0$ sur [-2, 7].



D'après le tableau, on voit que sur [-2; -1.5], on a f(x) > 4.

Puis sur]-1.5,1[, on a f(x) < 4.

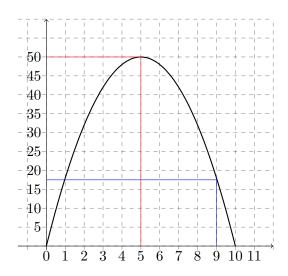
En fin sur [1;7], on a f(x) < 4.

et pour f(x) > 4, S = [-2, -1.5]Donc pour $f(x) \le 4$, S = [-1.5; 7]

II Extrema (séance 3 cours + exercices : 2h)

Activité introductrice(à compléter)

Une entreprise produit et vend des boules de Noël. Le prix de vente unitaire peut être fixé entre 1 et 10 euros. En fonction de celui-ci, le nombre de ventes, donc la recette journalière varient. Après une étude de marché, le gérant a modélisé la recette journalière (en centaines d'euros) en fonction du prix de vente par une fonction R dont voici la courbe représentative.



- 1. Quelle est la recette journalière pour un prix de vente de 9 euros? On lit environ 17.5 en ordonnée (trait bleu). La recette sera de 17.5 centaines d'euros ou 1750 euros.
- 2. (a) Quelle est la recette maximale? Pour quel prix est-elle atteinte?(trait rouge) La recette maximale sera de 50 centaines d'euros ou 5000 euros. Elle sera atteinte pour un prix de vente de 5 euros.
 - (b) Compléter: R a pour maximum 50 car, pour tout $x \in [0; 10]$, on a $f(x) \leq 50$ et f(5) = 50 C'est ainsi que l'on définit le maximum d'une fonction.
- 3. Une fonction g définie sur [-5; 5] a pour minimum 2 atteint en x = a.

Écrire la traduction mathématique de cet énoncé sur le modèle de la question précédente.

pour tout $x \in [-5, 5]$, on a $g(x) \ge 2$ et g(a) = 2

Définition 3

Soit a et b deux réels de l'intervalle I,

— f admet en a un **maximum** sur l'intervalle I signifie que :

Pour tout réel x de $I, f(x) \leq f(a)$

Autrement dit, f(a) est l'ordonnée du point la plus haut (s'il existe) de la courbe représentative de f sur I.

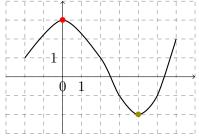
— f admet en b un **minimum** sur l'intervalle I signifie que :

Pour tout réel x de $I, f(x) \ge f(b)$

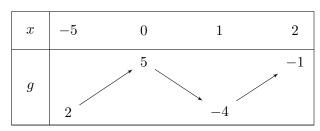
Autrement dit, f(b) est l'ordonnée du point la plus bas (s'il existe) de la courbe représentative de f sur I.

Un extremum est un minimum ou un maximum.

Exemple 4: Donner les extrema des fonctions f et g suivantes.



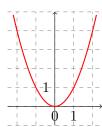
Le maximum est 3 (atteint lorsque x=0, point rouge). Le minimum est -2 (atteint lorsque x=4, point marron).



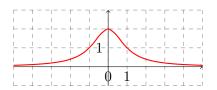
Le maximum est 5 (atteint lorsque x = 0) et le minimum est -4 (atteint lorsque x = 1).

Remarque: Une fonction peut ne pas avoir de maximum ou de minimum, en particulier lorsqu'elle est définie sur un intervalle ouvert comme $]-\infty;+\infty[...$

Exemple 5:

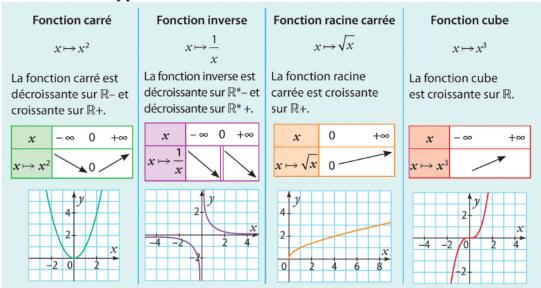


La fonction carrée a pour minimum 0 (atteint lorsque x=0) mais n'a pas de maximum.



La fonction définie par $g(x) = \frac{2}{1+x^2}$ sur \mathbb{R} a pour maximum 2 (atteint en 0) mais n'a pas de minimum. Sa courbe représentative se rapproche de l'axe des abscisses sans l'atteindre.

Rappel des variations des fonctions de référence



Sur leurs ensembles de définition respectifs,

Les fonctions carréet racine carréeont pour minimum 0 (atteint en 0) et n'ont pas de maximum. Les fonctions cubeet inversen'ont ni minimum, ni maximum.

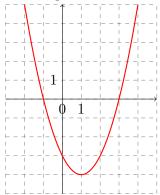
Les extrema d'une fonction sont souvent faciles à lire sur la représentation graphique ou le tableau de variations. Ils peuvent aussi être démontrés par un calcul.

Exemple 6: On souhaite étudier la fonction $f(x) = x^2 - 2x - 3$ définie sur \mathbb{R} .

- 1. Utiliser la calculatrice pour visualiser sa courbe et donner son tableau de variation.
- 2. Montrer que $f(x) = (x-1)^2 4$. En déduire que pour tout $x, f(x) \ge -4$.

correction de l'exemple On souhaite étudier la fonction $f(x) = x^2 - 2x - 3$ définie sur \mathbb{R} .

1. Utiliser la calculatrice pour visualiser sa courbe et donner son tableau de variation.



x	$-\infty$	1	$+\infty$
f		-4	

2. Montrer que $f(x) = (x-1)^2 - 4$. En déduire que pour tout $x, f(x) \ge -4$. Pour tout $x, f(x) \ge -4$.

$$(x-1)^{2}-4 = x^{2}-2x+1-4$$
$$= x^{2}-2x-3$$
$$= f(x)$$

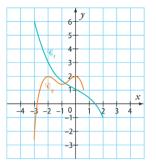
Or un carré est toujours positif, donc pour tout x,

$$(x-1)^{2} \geqslant 0$$

$$(x-1)^{2}-4 \geqslant -4$$

$$f(x) \geqslant -4$$

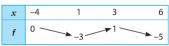
Exercices



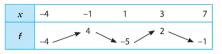
- 1. f admet-elle un maximum ? un minimum ? Si oui, pour quelle(s) valeur(s) de x sont-ils atteints ?
- 2. Même question pour la fonction g.
- $\frac{36}{f}$ f est une fonction dont voici le tableau de variations.

- 1. Donner l'ensemble de définition de f.
- 2. f admet-elle un maximum ? Si oui, pour quelle(s) valeur(s) de x est-il atteint?
- **3.** *f* admet-elle un minimum ? Si oui, pour quelle(s) valeur(s) de x est-il atteint?

 $\frac{34}{2}$ f et g sont des fonctions dont voici les courbes repré- $\frac{37}{2}$ f est une fonction dont voici le tableau de variations.



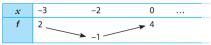
- 1. Donner l'ensemble de définition de f.
- **2.** Déterminer le minimum de f et la valeur de x pour laquelle
- 3. Déterminer le maximum de f et la valeur de x pour laquelle il est atteint.
- f est une fonction dont voici le tableau de variations.



- 1. Donner l'ensemble de définition de f.
- 2. Donner un encadrement de f(x) sur l'ensemble de définition de f.
- 3. L'équation f(x) = 3 peut-elle avoir trois solutions ?
- f est une fonction dont voici le tableau de variations.

- 1. Donner son ensemble de définition.
- **2.** Donner un encadrement de f(x) lorsque $x \in [-5; -3]$.
- 3. Donner un encadrement de f(x) lorsque $x \in [-3; 4]$.
- 4. Comparer si possible, les nombres suivants.
- **a)** f(-4) et f(-3)
- **b)** f(-2) et f(3)

1. f est une fonction paire définie sur [-3; 3] dont voici l'ébauche de son tableau de variations.

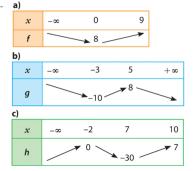


Le recopier et le compléter.

2. g est une fonction impaire définie sur [–5 ; 5] dont voici l'ébauche de son tableau de variations.

Le recopier et le compléter.

57 Pour chaque tableau de variations, déterminer si la fonction représentée admet un maximum et/ou un minimum avec les informations disponibles.



exercice 34:

- 1. f (courbe bleue) admet pour maximum 6 (atteint lorsque x = -3) et pour minimum -1 (atteint lorsque x = 2).
- 2. q (courbe orange) admet pour maximum 2 (atteint deux fois lorsque x = -2 et x = 0) et pour minimum -2.5 (atteint lorsque x = -3).

exercice 36:

- 1. f est définie sur [-4; 6]
- 2. f admet pour maximum 5, atteint lorsque x = 3.
- 3. f admet pour minimum -2, atteint lorsque x = 6.

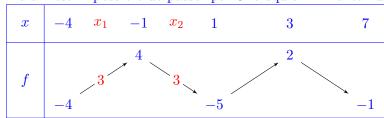
exercice 37:

- 1. f est définie sur [-4; 6]
- 2. f admet pour minimum -5, atteint lorsque x = 6.
- 3. f admet pour maximum 1, atteint lorsque x = 3.

exercice 43:

- 1. f est définie sur [-4;7]
- 2. Le maximum de f est 4, le minimum de f est -5 donc pour tout x de l'ensemble de définition, $-5 \leqslant f(x) \leqslant 4$.
- 3. L'équation f(x) = 3 ne peut avoir que deux solutions :
 - une solution x_1 sur l'intervalle [-4; -1] car il est cohérent de passer par 3 lorsqu'on « monte » de -4 à 4.
 - une solution x_2 sur l'intervalle [-1;1] car il est cohérent de passer par 3 lorsqu'on « descend » de 4

Mais il est impossible de passer par 3 lorsqu'on « monte »de -5 à 2; ou qu'on « descend »de 2 à -1.



exercice 59:

- 1. f est définie sur [-5;4]
- 2. Sur [-5; -3], on lit que $-4 \le f(x) \le 3$.
- 3. Sur [-3; 4], on lit que $1 \le f(x) \le 7$.
- 4. (a) On peut comparer f(-4) et f(-3) car ils sont « sur la même flèche ». Elle « descend ». Donc f(-4) < f(-3)
 - (b) On ne peut pas comparer f(-2) et f(1) car ils ne « sont pas sur la même flèche ».

exercice 49:

1. Rappel : une fonction paire a une courbe/des variations symétriques par rapport à l'axe des ordonnées (pliage suivant l'axe vertical).

x	-3	-2	0	2	3
f	2	-1	4	-1	2

2. Rappel : une fonction impaire a une courbe/des variations symétriques par rapport à l'origine du repère (demi-tour autour de O).

(======	cour cacour				
x	-5	-1	0	1	5
f	-1	-3	0	3	1

exercice 57:

- a) La fonction admet pour minimum 8 mais on ne peut savoir si elle a un maximum.
- b) On ne peut savoir si la fonction a un maximum ou un minimum. Par exemple, la flèche de droite peut descendre plus bas que -10...
- c) La fonction a pour maximum 7 mais on ne peut savoir si elle a un minimum (la flèche de gauche peut provenir de plus bas que -30)

Séance 4 : QCM Bilan sur l'ENT